فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

HYVARINEN A.

نشریه: 

NEURAL COMPUTING SURVEYS

اطلاعات دوره: 
  • سال: 

    1999
  • دوره: 

    2
  • شماره: 

    -
  • صفحات: 

    94-128
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    272
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 272

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

HYVARINEN A. | OJA E.

نشریه: 

NEURAL NETWORKS

اطلاعات دوره: 
  • سال: 

    2000
  • دوره: 

    13
  • شماره: 

    -
  • صفحات: 

    411-411
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    281
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 281

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Aljobouri Hadeel K.

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    13
  • شماره: 

    2
  • صفحات: 

    169-180
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    38
  • دانلود: 

    0
چکیده: 

Background: Independent Component Analysis (ICA) is the most common and standard technique used in functional neuroscience data Analysis. Objective: In this study, two of the significant functional brain techniques are introduced as a model for neuroscience data Analysis. Material and Methods: In this experimental and analytical study, Electroencephalography (EEG) signal and functional Magnetic Resonance Imaging (fMRI) were analyzed and managed by the developed tool. The introduced package combines Independent Component Analysis (ICA) to recognize significant dimensions of the data in neuroscience. This study combines EEG and fMRI in the same package for Analysis and comparison results. Results: The findings of this study indicated the performance of the ICA, which can be dealt with the presented easy-to-use and learn intuitive toolbox. The user can deal with EEG and fMRI data in the same module. Thus, all outputs were analyzed and compared at the same time,the users can then import the neurofunctional datasets easily and select the desired portions of the functional biosignal for further processing using the ICA method. Conclusion: A new toolbox and functional graphical user interface, running in cross-platform MATLAB, was presented and applied to biomedical engineering research centers.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 38

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

NOH S. | PAE K. | LEE C.

اطلاعات دوره: 
  • سال: 

    2002
  • دوره: 

    -
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    237
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 237

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

AMANATIADIS A.A. | ANDREADIS I.

اطلاعات دوره: 
  • سال: 

    2011
  • دوره: 

    59
  • شماره: 

    7
  • صفحات: 

    1755-1763
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    153
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 153

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

RAHMANI SHAMSI JAFAR | DOLATI ALI

اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    14
  • شماره: 

    2
  • صفحات: 

    247-266
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    212
  • دانلود: 

    0
چکیده: 

In this paper, we propose a nonparametric rank-based alternative to the least-squares Independent Component Analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of the proposed algorithm through simulation and real data Analysis. Since the proposed algorithm uses rank values rather than the actual values of the observations, it is extremely robust to the outliers and suffers less from the presence of noise than the other algorithms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 212

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

HYVARINEN A. | OJA E.

نشریه: 

NEURAL COMPUTATION

اطلاعات دوره: 
  • سال: 

    1997
  • دوره: 

    7
  • شماره: 

    7
  • صفحات: 

    1483-1483
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    142
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 142

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    6
تعامل: 
  • بازدید: 

    168
  • دانلود: 

    0
چکیده: 

Independent Component Analysis (ICA) IS A MULTIVARIABLE STATISTICAL Analysis METHOD WHICH CAN BE APPLIED FOR FACE RECOGNITION PROBLEM. THE AIM OF RECOGNITION IS TO APPROXIMATELY ESTIMATE THE ComponentS FROM THE RAW IMAGE. ComponentS PLAYS AN IMPORTANT ROLE IN FACE RECOGNITION SYSTEMS. CONSEQUENTLY, THESE ComponentS ARE USED FOR EXTRACTION OF FACE IMAGE FEATURES. HOWEVER, THESE FEATURES MAY NOT BE APPROPRIATE FOR CLASSIFICATION, SINCE THE ICA METHOD DOES NOT CONSIDER THE CLASS INFORMATION. FOR THE PURPOSE OF OPTIMIZING THE PERFORMANCE OF ICA, THE DISCRIMINANT ICA (DICA) METHOD, WHICH IS A COMBINATION OF ICA AND LDA METHODS, IS UTILIZED FOR FACE RECOGNITION IN THIS STUDY. WE HAVE ALSO PROPOSED PARTICLE SWARM OPTIMIZATION METHOD TO IMPROVE THE DICA PERFORMANCE, IN WHICH PSO IS USED INSTEAD OF THE GRADIENT APPROACH FOR LEARNING DICA. THE RESULTS OF PSO-DICA METHOD CONFIRM OUR IDEA IN CLASSIFICATION EXPERIMENTS COMPARED TO OTHER METHODS. USING PROPOSED METHOD ON YALE B DATASET, GIVES AN AVERAGE CLASSIFICATION ACCURACY OF 92.169% COMPARED WITH AN ACCURACY OF 91.322% USING WHEN DICA AND ACCURACY OF 89.77% COMPARED WITH ICA AND ACCURACY OF 86.18% USING PCA AND ALSO ACCURACY OF 84.76% USING LDA

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 168

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

YI QIONG X. | BI CHENG L. | BO W.

اطلاعات دوره: 
  • سال: 

    2004
  • دوره: 

    -
  • شماره: 

    4
  • صفحات: 

    194-198
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    164
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 164

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

ERFANI ALI | ERFANIAN ABBAS

اطلاعات دوره: 
  • سال: 

    2004
  • دوره: 

    11
تعامل: 
  • بازدید: 

    143
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

THIS ARTICLE PRESENTS THE USE OF Independent Component Analysis (ICA) TO CHARACTERIZE THE CHANGES OF EEG SIGNALS DURING IMAGINING HAND CLOSING, HAND OPENING, AND DURING A RESTING STATE. ICA IS A USEFUL EXTENSION OF THE PRINCIPLE Component Analysis (PCA) THAT ALLOWS BLIND SEPARATION OF SOURCES, LINEARLY MIXED, ASSUMING ONLY THE STATISTICAL INDEPENDENCE OF THESE SOURCES. THIS SUGGESTS THAT ICA CAN SEPARATE DIFFERENT Independent BRAIN ACTIVITIES DURING MOTOR IMAGERY INTO SEPARATE ComponentS. FOR THIS PURPOSE, DIFFERENT EXPERIMENTS WERE CONDUCTED ON NORMAL SUBJECTS. THE EEG SIGNALS WERE RECORDED AT A SAMPLING RATE OF 256 BY SCALP ELECTRODES PLACED ACCORDING TO THE INTERNATIONAL 10-20 SYSTEM. ANOTHER CHANNEL WAS ADDED TO RECORD EYE BLINKS BY PLACING AN ELECTRODE ON THE FOREHEAD ABOVE THE LEFT BROW LINE. THE RESULTS SHOW THAT THE VISUAL STIMULUS RESPONSE, P300 Component, MOTOR IMAGERY POTENTIAL, AND BACKGROUND EEG ComponentS CAN BE SEPARATED BY THE Independent Component Analysis OF EEG SIGNALS DURING HAND MOVEMENT IMAGINATION. TIME FREQUENCY Analysis OF THE Independent Component OF THE EEG SIGNAL SHOWS THAT THE POWER OF ALPHA BAND IS DECREASED DURING MOTOR IMAGERY. THE RATE OF DECREASE DURING HAND CLOSING IS MORE THAN THAT DURING OPENING. MOREOVER, THE BEGINNING OF MOTOR IMAGINATION IS ACCOMPANIED BY AN INCREASE OF DELTA AND TETA BAND POWER.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 143

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button